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Abstract We present a method to determine the reduction of a (polynomial or ratio-
nal) ordinary differential equation that models a chemically reacting system, under
the assumption that this system admits quasi-steady state (QSS) behavior for certain
variables or reactions. We interpret QSS mathematically as a singular perturbation
setting to which the classical theorems of Tikhonov and Fenichel apply. Based on a
special decomposition of the fast part of the equation, we obtain an explicit formula
for a reduced system, defined on the slow manifold (which is a subset of an algebraic
variety). Moreover we determine appropriate initial values for the reduced system,
which correspond to first integrals of the fast subsystem. These first integrals may not
be obtainable in closed form, but locally Taylor expansions are available. We give
several examples and applications, and we discuss in detail the separation of a system
into fast and slow reactions. It turns out that methods and results from (algorithmic)
commutative algebra and algebraic geometry are useful tools for QSS reduction.

Keywords Singular perturbations · Enzyme-catalyzed reactions · QSS reduction ·
Algebraic variety
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1 Introduction

Quasi-steady state (QSS) phenomena occur frequently for differential equations that
model chemical and biochemical reactions. Their existence, on the one hand, must be
taken into account due to stiff behavior for numerical solutions. On the other hand,
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QSS scenarios are welcome because they permit a (sometimes substantial) reduction
of dimension for a given system. By now it is customary to interpret QSS as a singular
perturbation phenomenon ([16,17,21,28,29] and others), and in the present paper we
will adhere to this interpretation. Thus mathematically we work within the framework
of Tikhonov’s [33] and Fenichel’s [10] classical papers. (We will refer to this as
Tikhonov–Fenichel reduction.) Moreover we will restrict attention to systems with
polynomial or rational right-hand side; this is motivated by our focus on chemically
reacting systems and mass-action kinetics. This assumption will allow the employment
of algebraic techniques.

Tikhonov’s theorem (see Verhulst [34], Ch. 8) is directly applicable only if the
variables are separated into fast and slow ones. Fenichel’s theory [10] overcomes this
problem but generally no explicit reduction is given. For systems that model chemical
reactions, with additional assumptions, explicit reduction formulas were obtained by
Schauer and Heinrich [28], Stiefenhofer [31], Bothe [4], Lee and Othmer [23], among
others. Lee and Othmer also discuss the fast initial phase and the determination of
appropriate initial values for the reduced system. For general differential equations
with rational right-hand side, the principal result in [26] states that whenever the
hypotheses of Tikhonov’s theorem are satisfied (for suitable coordinates which need
not be known explicitly), there exists a reduced system which has again rational right-
hand side. However, although the reduction procedure given in [26] is in principle
constructive, it is not feasible beyond small dimensions.

In the present paper we start from a QSS scenario, thus a rational system depending
on a “small parameter” ε is given which satisfies the hypotheses of Tikhonov’s theo-
rem, up to some coordinate transformation. We show that there exists a decomposition
of the fast part which generalizes the matrix-vector decomposition obtained from stoi-
chiometry for certain classes of reaction equations [4,23,28], but our proof works with
(and requires) mathematical arguments only. (The necessary algebraic background is
presented in an “Appendix”, as are some proofs; using these results in applications is
quite straightforward.) Once this decomposition (which is obtainable in an algorith-
mic manner) is known, a reduced system is explicitly computable; in this sense our
approach is constructive. We arrive at a reduced system that has rational right-hand
side and is defined on an algebraic variety. It may be worth emphasizing that this
setting is a natural consequence of mass action kinetics and the Tikhonov–Fenichel
reduction procedure; no further assumptions or simplifications are involved. While the
determination of the reduced system is thus algorithmically accessible, a discussion
of the fast subsystem, hence of the initial phase and the appropriate initial data on the
slow manifold, may be more complicated. The fundamental problem is that, although
the existence of certain (independent) first integrals for the fast system is known from
theory, their explicit determination is generally impossible. (In the special cases dis-
cussed by Schauer and Heinrich [28], Bothe [4], Lee and Othmer [23], stoichiometry
provides sufficiently many independent linear first integrals.) Generally, resorting to
Taylor expansion will yield at least locally useful approximations.

The paper is organized as follows. In Sect. 2 we briefly review the setup for sin-
gular perturbations, then state a theorem which describes a computationally feasible
approach to the reduced equation, which is generally defined on a local submanifold
or subvariety of phase space. (The theorem generalizes the main result of [14], which
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corresponds to the subvariety being an affine subspace. It was announced in [15], but
no proof of the crucial part was given there.) We also compare the reduction to existing
work in the literature. We proceed to discuss the fast dynamics, in view of determin-
ing an appropriate starting value on the slow manifold from given initial data, and
then illustrate the method by a number of examples. (More examples are contained in
[15].) In Sect. 3 we turn to the setting of slow and fast reactions (QSS for reactions,
or PEA) and discuss the relevance of the classical results by Horn and Jackson, and
Feinberg, on Tikhonov–Fenichel reduction. In Sect. 4 we discuss an example (maltose
transport), where reduction leads to a system on a nontrivial algebraic curve. We show
that (and how) the behavior of the reduced system can be discussed rather easily in
such a setting. An “Appendix” contains some basic information on algebraic notions,
results and algorithms, and also the proof of the main theorem.

2 Reduction

2.1 Preliminaries

Throughout this paper let U ⊂ R
n be an open set, ε0 > 0, and h : U ×[0, ε0) → R

n an
analytic function which defines a parameter-dependent system of ordinary differential
equations

ẋ = h(0)(x)+ εh(1)(x)+ ε2 . . . , x ∈ U. (1)

The equation may (as reaction equations typically do) depend on further parameters,
but we will assume that these are constant, and will suppress them in the notation. In
the slow time scale τ = εt we have a singularly perturbed system

x ′ = 1

ε
h(0)(x)+ h(1)(x)+ ε . . . , x ∈ U. (2)

Our primary interest lies in the behavior as ε → 0; h(0) will be called the fast part
and h(1) the slow part of either system. We will focus on those scenarios for which the
classical singular perturbation theorems of Tikhonov [33] and Fenichel [10] hold.

Tikhonov’s theorem (specialized to the autonomous analytic case) refers to a system
in what we call Tikhonov standard form, i.e.,

y′
1 = f (y1, y2)+ ε . . . , y1 ∈ D,

εy′
2 = g(y1, y2)+ ε . . . , y2 ∈ G

(3)

in slow time with small parameter ε ≥ 0, defined on an open set D × G ⊂ R
s+r with

r + s = n. See the monograph by Verhulst [34]; in particular Theorem 8.1. Thus, we
let

˜Z :=
{

(y1, y2)
T ∈ D × G; g(y1, y2) = 0

}
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and assume a uniform linear stability condition for the eigenvalues of the Jacobian
D2g(y1, y2) (with respect to y2); viz., the existence of μ > 0 such that

Re Sp D2g(y1, y2) ≤ −μ for every (y1, y2) ∈ ˜Z . (4)

Then Tikhonov’s theorem guarantees that there are T > 0 and a neighborhood of
˜Z such that all solutions of (3) starting in this neighborhood converge uniformly on
[t0, T ] to solutions of the reduced system on ˜Z , given by

ẏ1 = f (y1, y2), g(y1, y2) = 0 (5)

for ε → 0, for any t0 > 0. We will refer to ˜Z as the (asymptotic) slow manifold of the
system.

In general, reaction equations (1) are not in standard form (3). Fenichel [10] deals
with this general setting, and the following local characterization of systems which
admit a coordinate transformation to Tikhonov standard form essentially goes back to
his work. An elementary proof of the next result is given in [26].

Proposition 1 Let system (1) be given, and denote by Z the zero set of h(0). Let x0 ∈ Z
and assume that there exists a neighborhood ˜U such that Z ∩ ˜U is an s-dimensional
submanifold of R

n. Then there exists an invertible coordinate transformation to stan-
dard form (3) satisfying condition (4) in some neighborhood of x0, if and only if the
following hold.

(i) The rank of Dh(0)(x0) is equal to n-s, and one has a direct sum decomposition

R
n = Ker Dh(0)(x0)⊕ Im Dh(0)(x0). (6)

(ii) The nonzero eigenvalues of Dh(0)(x0) have real part < 0.

Extending the nomenclature from above, we will refer to Z ∩ ˜U—and briefly to
Z—as the (asymptotic) slow manifold of (1).

As pointed out in [26], Proposition 1 guarantees the existence of a transformation
to Tikhonov standard form, but generally it is impossible to determine such a transfor-
mation explicitly. On the other hand, it was also shown in [26] that a reduced system
can be determined explicitly, but some issues of feasibility remained open.

2.2 Reduction of rational systems

We will (have to) use some notions and results from classical commutative algebra
and algebraic geometry. For the reader’s convenience, a short overview is given in the
Appendix “Some algebra”. Our main result provides an algorithmic approach to the
computation of reduced equations for general systems (1) with rational right-hand side,
in particular for reaction equations with mass action kinetics. The central argument
underlying the reduction theorem relies on a classical result from algebraic geometry;
see Lemma 2 in Appendix “Proof of Theorem 1”.
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Thus we assume that h is rational, in particular h(0) ∈ R(x)n . Hence the zero set
V(h(0)) forms a Zariski-open and dense subset of an algebraic variety. The following
result describes Tikhonov–Fenichel reduction in such a scenario.

Theorem 1 Consider system (1) with rational right-hand side h, and let a ∈ R
n be

a simple point of V(h(0)), with r = rank Dh(0)(a). (Thus locally the dimension of
V(h(0)) equals s = n − r .) Assume moreover that there is a direct sum decomposition

R
n = Ker Dh(0)(a)⊕ Im Dh(0)(a).

Then the following hold.

(a) There exist a Zariski-open neighborhood Ua of a in R
n and a product decompo-

sition with matrices μ(x) ∈ R(x)r×1, P(x) ∈ R(x)n×r , such that

h(0)(x) = P(x)μ(x), x ∈ Ua (7)

with rank P(a) = r , rank Dμ(a) = r and

V(h(0)) ∩ Ua = V(μ) ∩ Ua

is a (n − r)-dimensional submanifold. The entries of μ may be taken as any r
entries of h(0) that are functionally independent at a.

(b) The following system is defined on a Zariski-open neighborhood of a in R
n, and

admits a Zariski-open neighborhood Ua ⊂ V(h0) as an invariant set:

x ′ =
[

In − P(x)A(x)−1 Dμ(x)
]

h(1)(x), (8)

with

A(x) := Dμ(x)P(x) ∈ R(x)r×r

invertible for all x ∈ Ua.
(c) If all the nonzero eigenvalues of Dh(0)(a) have negative real part then system

(8), restricted to the slow manifold Ua, corresponds to the reduced system (5)
from Tikhonov’s theorem.

The proof of this Theorem will be given in Appendix “Proof of Theorem 1”.

Remark 1 (a) We will call

Q(x) := In − P(x)A(x)−1 Dμ(x) (9)

the projection operator of the reduction. Although this may seem apparent from
(8), it is not necessary to invert the matrix A(x); in practice one only needs to
solve one linear system of equations involving this matrix. The size (r × r ) of A
determines the size of the reduction (to a system of dimension n − r ).
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(b) The projection operator Q projects h(1)(x) to its kernel component in the kernel-
image decomposition with respect to Dh(0)(x). This corresponds to the reduced
system in the sense of Tikhonov and Fenichel, as shown in [26], Lemma 2.4
and Proposition 2.5. One may also view this projection as a special (degenerate)
instance of the CSP reduction by Lam and Goussis [22], where a decomposition
corresponding to “large” and “small’ eigenvalues is carried out iteratively. In the
limiting case when the small eigenvalues are equal to zero (and one has a direct
kernel-image decomposition), the iteration terminates after one step.

(c) A detailed proof of part (b) is given in [15]. The specific form of the reduced system
for particular classes of equations—using special properties of reaction equations
and with different proofs—was also given earlier by Boulier et al. [3], and (in a
special case) by Bothe [4], Theorem 2; see also Lee and Othmer [23]. The classical
paper by Fenichel [10], as well as Stiefenhofer’s paper [31], contain explicit
reduction formulas for sufficiently smooth vector fields under the assumption
that a parameterization of the slow manifold is explicitly known. The crucial
point of our approach, however, is the general existence of the decomposition in
part (a); we prove this by a purely mathematical argument.

(d) There is a constructive method to obtain the multiplicative decomposition in part
(a) of the Theorem, and thus the reduction procedure as a whole is algorithmically
accessible. The argument is sketched in Appendix “Algorithmic decomposition”.
We note that in many applications one will find a decomposition by inspection.

Remark 2 Theorem 1 also applies to the analytic (and to the sufficiently smooth) case.
In these settings the decomposition in part (a) is a consequence of the implicit function
theorem; the proof of part (b) rests only on the existence of such a decomposition. But
note that generally this is not a constructive approach.

Remark 3 (a) The right-hand side of (8) is well-defined whenever the direct sum
decomposition of R

n with respect to Dh(0)(a) exists; we will sometimes refer to
this as a formal reduction. The results of Fenichel [10] show that there actually
exists a slow manifold (not attractive in general) provided that all nonzero eigen-
values of Dh(0)(a) have nonzero real part (the normally hyperbolic case). The
following observation, which goes back to a statement of Tikhonov’s theorem
with weaker hypotheses (see e.g. Verhulst [34], Thm. 8.1, hypothesis b) is also
worth noting: If every point a in a neighborhood of a0 in V(h(0)) is asymptotically
stable for the equation ẋ = h(0)(x), with attraction locally uniform in a, then one
has a convergence result analogous to part (c) of the Theorem.

(b) The condition, in Theorem 1, on a being a simple point of the variety V(h(0))
is also necessary for the existence of a reduction in the sense of Tikhonov and
Fenichel, since it is necessary for the local submanifold property. We do not
address the (interesting) question of behavior near singular points in this paper.

Remark 4 It may be appropriate to take a closer look at the linear algebra underlying
part (b) of Theorem 1. Thus let r < n and R ∈ R

n×n of rank r , S ∈ R
n×r and

T ∈ R
r×n such that

R = ST .
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Then rank T = r and Ker R = Ker T , Im R = Im S, and the following are equivalent.

(i) R
n = Ker R ⊕ Im R;

(ii) R
n = Ker T ⊕ Im S;

(iii) Ker T ∩ Im S = {0};
(iv) T S is invertible.

These statements and their proofs are standard. For instance, the first assertion is a
consequence of rank ST ≤ min{rank S, rank T }, and the second follows from Ker R ⊆
Ker T and equal dimension. This underlies Theorem 1(b), with R = Dh(0)(x), S =
P(x), T = Dμ(x) for x ∈ V(h(0)). We will get back to such arguments in Sect. 3.

2.3 Fast dynamics

We turn to the initial phase for system (1), given that the conditions of Proposition 1
are satisfied. Our principal interest lies in determining appropriate initial data for the
reduced system (8) from the initial data of (1). Tikhonov’s theorem is—again—crucial
for this, thus we first review the setting in Tikhonov standard form.

In fast time, system (3) becomes

ẏ1 = ε f (y1, y2)+ ε2 . . . , y1 ∈ D ⊂ R
s

ẏ2 = g(y1, y2)+ ε . . . , y2 ∈ G ⊂ R
r , (10)

which in the limiting case ε = 0 degenerates to the system

ẏ1 = 0

ẏ2 = g(y1, y2),

which has two characteristic features: Every entry of y1 is a first integral, and every
solution of this equation, starting at (z1, z2) in a sufficiently small neighborhood of
the slow manifold ˜Z , converges for t → ∞ to a single point on ˜Z , which is defined
by g(z1, y∗

2 ) = 0. In other words, the limit point is the intersection of ˜Z and level sets
of first integrals. By coordinate change and Proposition 1 we obtain:

Proposition 2 Let x0 ∈ V(h(0)) and suppose that there is some neighborhood ˜U of
x0 such that V(h(0)) ∩ ˜U is an s-dimensional submanifold of R

n. Moreover assume
that conditions (i) and (ii) in Proposition 1 are satisfied. Then the following hold for
ε = 0.

(a) System (1) admits s independent first integrals φ1, . . . , φs in a neighborhood U∗
of x0. Moreover, in U∗ the intersection of every level set φ j (x) = c j = const.,
1 ≤ j ≤ s, with V(h(0)) consists of a single point.

(b) For any w ∈ U∗ which also lies in the domain of attraction, the solution of (1)
with initial value w converges to the intersection point of V(h(0)) and the level
set φ j (x) = φ j (w), 1 ≤ j ≤ s, as t → ∞.
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This intersection point is the appropriate initial value for the reduced system on
the slow manifold, which approximates the behavior of (1) for small ε > 0. For a
proof see Fenichel [10], Theorem 9.1, and also the arguments in Verhulst [34], section
8.3, about matching of expansions. Moreover, cf. Lee and Othmer [23], p. 404f. and
p. 407f.; and Stiefenhofer [31], p. 596 and p. 599 for reaction systems.

Remark 5 In the context of reaction equations the determination of appropriate initial
data on the slow manifold has been discussed by Heinrich and Schauer [28], Stiefen-
hofer [31], and Lee and Othmer [23] (in particular p. 408). They consider a slow–fast
reaction scenario and make specific use of linear first integrals given by stoichiometric
properties of the fast subsystem. Stiefenhofer [31], p. 607 discusses an application to
a maltose transport model. See Sect. 3 for more details.

Remark 6 Generally one cannot determine first integrals of the fast subsystem explic-
itly; see the discussion about transformations to Tikhonov standard form in [26]. But
one can determine Taylor approximations of such first integrals near the slow manifold
Z . Thus let x0 ∈ Z be a simple point. Then h(0) admits a Taylor expansion

h(0)(x) = h(0)1 (x − x0)+ h(0)2 (x − x0)+ · · ·

with homogeneous terms h(0)j (x − x0) of degree j . An analytic first integral ψ of h(0)

has a representation

ψ(x) = ψ1(x − x0)+ ψ2(x − x0)+ · · ·

with homogeneous ψi of degree i . Since ψ is a first integral, the Lie derivative with
respect to h(0) vanishes, thus

(

Lh(0)ψ
)

(x) = Dψ(x)h(0)(x) = 0, for all x .

Evaluating this condition degree by degree, one obtains necessary and sufficient con-
ditions

Degree 1 : Dψ1(y)h
(0)
1 (y) = 0

Degree 2 : Dψ2(y)h
(0)
1 (y)+ Dψ1(y)h

(0)
2 (y) = 0

Degree 3 : Dψ3(y)h
(0)
1 (y)+ Dψ2(y)h

(0)
2 (y)+ Dψ1(y)h

(0)
3 (y) = 0

...

(11)

For given h(0)j this allows a successive determination of theψi ; the existence of s inde-
pendent solutions (i.e., s linearly independent initial terms of degree one) is guaranteed
by [26], for instance.

The approximations thus obtained are relevant at least for initial values close to the
slow manifold. The computations can be handled by any standard algorithmic algebra
software.
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2.4 Examples

Several applications of Theorem 1, including reversible Michaelis–Menten and gen-
eralizations, have been discussed in [14] (where a special case of Theorem 1 was
considered), and in [15]. We present more examples here, for some including a dis-
cussion of the initial phase. Our main purpose is to illustrate the reduction procedure.

Example 1 Consider the reaction scheme

X + Y
k1�
εκ−1

Z ,

X
k2
⇀ ∅,

Z
εκ3
⇀ ∅,

imposing a QSS assumption on both reactions starting from Z , thus ε is a small
parameter. The reaction equations are given by

d

dt

⎛

⎝

x
y
z

⎞

⎠ =
⎛

⎝

−k1xy − k2x
−k1xy
k1xy

⎞

⎠ + ε

⎛

⎝

κ−1z
κ−1z

−(κ−1 + κ3)z

⎞

⎠.

We decompose the fast term

h(0) = P(x, y, z) · μ(x, y, z) :=
⎛

⎝

−k1 y − k2
−k1 y
k1 y

⎞

⎠ · x .

Since (DμP)(x, y, z) = −k1 y − k2 < 0 for all y ≥ 0, the convergence conditions in
Theorem 1 are satisfied on the nonnegative part of the slow manifold W := V(h(0))
= {(0, y, z); y, z ∈ R}. As stated in Theorem 1, the reduced system is given by
applying the projection

Q = I3 − P(DμP)−1 Dμ =
⎛

⎜

⎝

0 0 0
− k1 y

k1 y+k2
1 0

k1 y
k1 y+k2

0 1

⎞

⎟

⎠

to the slow term. Thus we get the reduced dynamics

ẏ = k−1k2
k1 y+k2

z

ż = −
(

k−1k2
k1 y+k2

+ k3

)

z
(12)

on the slow manifold W ; as a matter of notational convenience we set k−1 = εκ−1
and k3 = εκ3.
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During the transient phase the initial value (x0, y0, z0)
T ∈ R

3 in the domain of
attraction of V(h(0)) is attracted by a point (0, y∗, z∗)T ∈ V(μ). Asymptotically the
fast dynamics is given by h(0) which has two independent first integrals, viz.

ψ1((x, y, z)T ) = k1(x − y)− k2 lny and ψ2((x, y, z)T ) = y + z.

The second of these is due to stoichiometry, while the first can be obtained from the
separable orbit equation

dx

dy

(

= ẋ

ẏ

)

= 1 + k2

k1
· 1

y
.

Accordingly, y∗ and z∗ are uniquely determined by

y∗ + z∗ = y0 + z0,

k1 y∗ + k2lny∗ = k1(y0 − x0)+ k2lny0.
(13)

(As for uniqueness note that y �→ k1 y + k2lny is strictly increasing.) To summarize,
system (12) gives the reduced dynamics, with initial data determined by (13).

Example 2 Next we discuss the Brusselator model (Prigogine and Lefever [27]) with
a QSS assumption for one of the reactions. Consider the reaction scheme

A
k
⇀ X,

2X + Y
�
⇀ 3X,

B + X
m
⇀ Y + D,

X
n
⇀ E,

with rate constants k, �,m, n > 0. We impose a QSS assumption on the first reaction,
thus k is our small parameter. The four-dimensional system of reaction equations is
given by

d

dt

⎛

⎜

⎜

⎝

a
x
y
b

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
−�x2 y + �x3 − mbx − nx

−�x2 y + mbx
−mbx

⎞

⎟

⎟

⎠

+ k

⎛

⎜

⎜

⎝

−a
a
0
0

⎞

⎟

⎟

⎠

,

(a, x, y, b)T ∈ R
4. (Incidentally, this may also be interpreted as the case of a “slow

variable” a.) The fast term h(0) vanishes on the submanifold W given by x = 0. Since
the Jacobian of the fast term

Dh(0)(a, 0, y, b) =

⎛

⎜

⎜

⎝

0 0 0 0
0 −mb − n 0 0
0 mb 0 0
0 −mb 0 0

⎞

⎟

⎟

⎠
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has rank one when x = 0 and the nontrivial eigenvalue is negative, there exists a
Tikhonov–Fenichel reduction to the attractive slow manifold W . Defining

P(a, x, y, b) =

⎛

⎜

⎜

⎝

0
−�xy + �x2 − mb − n

−�xy + mb
−mb

⎞

⎟

⎟

⎠

, μ(a, x, y, b) = x,

Theorem 1 yields the reduced 3-dimensional system

ȧ = −a
ẏ = mba/(mb + n)
ḃ = −mba/(mb + n)

on W , which is elementary.
We turn to first integrals of

h(0) = h(0)1 + h(0)2 + · · · =

⎛

⎜

⎜

⎝

0
−nx

0
0

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0
−mbx
mbx

−mbx

⎞

⎟

⎟

⎠

+ · · ·

in order to find appropriate initial values on the slow manifold. According to Propo-
sition 2, three independent first integrals exist near any point of W . One of these is
given by the first coordinate (a, x, y, b) �→ a, but the explicit determination of three
independent first integrals of h(0) seems impossible here. Hence we use Remark 6
and determine an approximation up to degree two. Obviously, (a, x, y, b) �→ y and
(a, x, y, b) �→ b are independent first integrals of h(0)1 , and Proposition 2 guarantees
that there exist first integrals φ = y + t.h.o., ψ = b + t.h.o. for h(0).

Up to degree 2 we make the ansatz

φ(a, x, y, b) = y + α1x2 + β1xa + γ1xy + δ1xb + · · · = φ1 + φ2 + t.h.o.

with undetermined coefficients of the quadratic terms, and evaluate the condition

Dφ1 h(0)2 + Dφ2 h(0)1 = 0

for the homogeneous quadratic part. (In principle there are 10 monomials to be con-
sidered in the quadratic part, but any product of two terms a, y and b will provide no
information, since a, y and b are initial terms of first integrals, and products of first
integrals are first integrals). We get

mbx = −2α1x2 − nβ1xa − nγ1xy − nδ1xb
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and therefore δ1 = −m
n , α1 = β1 = γ1 = 0, comparing coefficients. We have

φ(a, x, y, b) = y − m

n
bx + · · · ,

and by a similar computation

ψ(a, x, y, b) = b − m

n
bx + · · ·

Thus the fast dynamics project an initial point (a0, x0, y0, b0)
T near W to (a∗, 0, y∗,

b∗)T ∈ W , with

a∗ = a0, y∗ = y0 − m

n
b0x0, b∗ = b0 − m

n
b0x0,

with approximation up to degree 2.

Example 3 (Field–Noyes model) We discuss a Field–Noyes model [11], following
the presentation in Murray [25], Ch. 8. The reaction scheme is given by

A + Y
k1
⇀ X + P, X + Y

k2
⇀ 2P,

A + X
k3
⇀ 2X + 2Z , 2X

k4
⇀ A + P, Z

k5
⇀ f Y

for some f ≥ 0. (This scheme is to be understood as compounding a larger set
of elementary reactions.) By mass-action kinetics one obtains a four-dimensional
differential equation

ȧ = − k1ay − k3ax + k4x2

ẋ = k1ay − k2xy + k3ax − k4x2

ẏ = − k1ay − k2xy + f k5z
ż = 2k3ax − k5z

(14)

We will not invoke the additional assumption in Murray [25], p. 260 that a is (nearly)
constant (which is used in [25] to reduce the system to three dimensions). Rather we
look at one possible interpretation of this assumption: We interpret the requirement of
constant a to mean that the function a is a first integral of (14), thus k1 = k3 = k4 = 0.
We relax these conditions to

k1 = εκ1, k3 = εκ3, k4 = εκ4

to obtain “almost-constancy” of a; this yields a slow-fast separation with fast part

h(0) =

⎛

⎜

⎜

⎝

0
−k2xy

−k2xy + f k5z
−k5z

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 0
−k2x 0
−k2x f k5

0 −k5

⎞

⎟

⎟

⎠

·
(

y
z

)
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and slow manifold W defined by y = z = 0. A Tikhonov–Fenichel reduction to W
exists, with

A =
(−k2x f k5

0 −k5

)

, A−1 = ρ−1
(−k5 − f k5

0 −k2x

)

; ρ = k2k5x

and projection matrix

Q =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 −1 − f
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

.

The reduced system on W is thus given by

ȧ = −k3ax + k4x2

ẋ = (1 − 2 f )k3ax − k4x2

This system exhibits rather simple behavior; for instance ψ = a + x is obviously a
Lyapunov function. (One should be aware that at x = 0 the reduction is no longer
guaranteed, since the rank of P collapses to one. There is also a two-dimensional
slow manifold contained in the plane x = z = 0, with equally simple dynamics. We
refrain from discussing the interplay of these two slow manifold components, such as
possible switching of an asymptotic solution from one to the other.)

Example 4 We also provide some systems for which there is no direct sum decompo-
sition as required in Proposition 1, and the reduction procedure is not applicable.

• The first one is rather simple (if a bit contrived), with reaction scheme

X
εκ1
⇀ mY, Y

εκ2
⇀ ∅,

thus X degrades slowly, and every molecule of X degrades to large number m of
Y -molecules, which in turn degrade slowly. The specific condition we impose is
mε = 1. Hence the differential equation reads

ẋ = −εκ1x
ẏ = x − εκ2 y,

with fast part

h(0) =
(

0
x

)

, Dh(0) =
(

0 0
1 0

)

,

and there is no kernel-image decomposition for this nilpotent matrix (Tikhonov is
not applicable in any coordinate system.) Likewise, there is no sensible reduction to
a “slow manifold” (which would have to be defined by x = 0) here. As the explicit
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solution of this linear system shows, generally solutions do not approach the set
x = 0 quickly, and the dynamics for y is not adequately described by the “reduced
equation” ẏ = −εκ2 y.

• Consider a simple autocatalytic reaction scheme

X + Y
k+�
k−

2X

with associated differential equation

ẋ = k+xy − k−x2

ẏ = −k+xy + k−x2.

Assuming that (−k−x2, k−x2)T is the fast part, we have the one-dimensional slow
manifold W defined by x = 0. Since the Jacobian vanishes on W , there is no direct
sum decomposition with appropriate dimensions.

• The following reaction scheme for a pyrolytic process can be found in the literature;
see e.g. Aiken [1], p. 44.

X1
k1
⇀ X2 + X3, X2 + X3

k2
⇀ X5,

X1 + X3
k3
⇀ X4, X4

k4
⇀ X3 + X6.

Through mass action kinetics, first integrals x1+x3+2x4+x5+x6 and x2−x3−x4,
and initial conditions x1(0) = c, x j (0) = 0 for j > 1 one arrives at the differential
equation

ẋ3 = (k1 − k3x3) (c − x3 − 2x4 − x5 − x6)− k2x3(x3 + x4)+ k4x4
ẋ4 = k3x3 (c − x3 − 2x4 − x5 − x6)− k4x4
ẋ5 = k2x3(x3 + x4)

ẋ6 = k4x4.

Assuming that k1 = εκ1 represents the slow part of the reaction, we obtain a two-
dimensional slow manifold

W =
{

(0, 0, x5, x6)
T
}

and

Dh(0)(0, 0, x5, x6) =

⎛

⎜

⎜

⎝

−k3(c − x5 − x6) k4 0 0
k3(c − x5 − x6) −k4 0 0

0 0 0 0
0 k4 0 0

⎞

⎟

⎟

⎠

Here the algebraic and the geometric multiplicity of the eigenvalue 0 are different;
the reduction theorem is not applicable.
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3 Slow and fast reactions

3.1 Review of reaction equations

We first briefly sketch the standard procedure to assign to a chemical reaction network
(in a spatially homogeneous setting, with constant thermodynamical parameters) a
system of ordinary differential equations. The main purpose is to fix notation and recall
some pertinent results. More detailed presentations can be found e.g. in Feinberg [9],
Sects. 2–3, Lee and Othmer [23], Sect. 2, or Schauer and Heinrich [28], Sect. 2. We
use the terminology from Feinberg [9].

Suppose that one has chemical species X1, . . . , Xn , with respective concentrations
(in suitable units) denoted by x1, . . . , xn . A reaction is denoted by

d1 X1 + · · · + dn Xn ⇀ e1 X1 + · · · + en Xn

with nonnegative integers d j , e j , and di �= ei for at least one i . (More generally, one
may consider nonnegative real numbers d j , e j , and discuss generalized mass-action
kinetics.) The formal linear combinations on both sides are called complexes; formally,
a reaction is an ordered pair of complexes. Thus a reaction network may be seen as
a directed graph, with complexes as nodes and reactions as edges. The connected
components of the underlying undirected graph are called linkage classes. A network
is called weakly reversible if for every directed edge connecting two complexes there
is a sequence of directed edges connecting these complexes in reverse order.

The ordinary differential equation assigned to the above reaction (with rate constant
k > 0) is

d

dt

⎛

⎜

⎝

x1
...

xn

⎞

⎟

⎠
= kxd1

1 · · · xdn
n

⎛

⎜

⎝

e1 − d1
...

en − dn

⎞

⎟

⎠
.

The vector on the right-hand side is also called a stoichiometric vector. (The stoi-
chiometric vectors span the stoichiometric subspace of the network.) To obtain the
differential equation for a network of reactions one adds up the individual reaction
terms. One may rewrite this concisely as

ẋ = f (x) := S · θ(x), (15)

with the columns of the stoichiometric matrix S being the stoichiometric vectors,
and θ a vector-valued function with monomial entries. (There are various notions of
stoichiometric matrix, but this is of no consequence for our purpose.) The deficiency of
a network is defined as the number of complexes, minus the number of linkage classes,
minus the dimension of the stoichiometric subspace; this is always a nonnegative
integer. Similarly one defines the deficiency of a single linkage class.

Whenever β : x �→ ∑

β j x j is a linear form with (β1, . . . , βn) · S = 0 then β is a
first integral of (15). We speak of a linear first integral induced by stoichiometry.
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A stoichiometric compatibility class (SCC) is by definition a coset of the stoichio-
metric subspace which contains an element of R

n+; it is called positive whenever it
contains an element of the interior R

∗+n . Thus stoichiometric compatibility classes
may also be seen as common level sets of linear first integrals from stoichiometry.

Addressing the differential equation, one first will simplify the matrix in (15),
since the columns of S will generally be linearly dependent (for instance whenever
the network contains both a reaction and its reverse). Lee and Othmer [23], Sect. 3,
provide an algorithm for such a simplification. For our purpose the following will
suffice.

Lemma 1 Let (15) be given, and rank S = q > 0.

(a) There exist a matrix ̂P ∈ R
n×q and a polynomial μ̂ ∈ R[x]q such that rank ̂P = q

and

f (x) = S · θ(x) = ̂P · μ̂(x).

(b) If W ⊆ V( f ) is a local submanifold of dimension n − r ≥ n − q then there exists
a further decomposition

μ̂(x) = P∗(x)μ(x), f (x) = ̂P P∗(x)μ(x)

with P∗ ∈ R(x)q×r of rank r , μ ∈ R[x]r , and W = V(μ) locally. In the special
case r = q one may take P∗ = Iq .

(c) Assume that x0 ∈ R
n+ is a stationary point which is isolated in its SCC, and

that Dμ̂(x0)̂P(x0) is invertible. Then there is a neighborhood U of x0 such that
W := V( f ) ∩ U is a local submanifold of dimension n − q, and moreover
R

n = Ker D f (x)⊕ Im D f (x) for all x ∈ W .

Proof For part (a), elementary column operations transform S to (̂P | 0) with ̂P ∈
R

n×q of full rank; in other words there is an invertible n × n matrix � such that

S = (̂P | 0)�.

Defining μ̂(x) as the first q entries of� · θ(x), the assertion follows. The proof of part
(b) is based on Lemma 2 and similar to that of Theorem 1. For part (c) we use Remark 4
to verify the direct sum decomposition. By the implicit function theorem, the zero set
of μ̂ is locally a submanifold of dimension n − q. Since (again by Remark 4) the
tangent space of W at x0 and the subspace spanned by the columns of ̂P have trivial
intersection, W coincides locally with the zero set of f . ��
Examples 1 and 2 above show that one generally cannot expect a decomposition in
the sense of Theorem 1 with constant matrix P; in both cases there are too few linear
first integrals. (Note that determining linear first integrals is just a matter of solving a
system of linear equations for the coefficients, hence all these can be found explicitly.)
Thus the mathematical approach to the decomposition in Theorem 1 goes beyond
arguments from stoichiometry. The following example illustrates that there may be an
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appropriate decomposition with a constant matrix, but the matrix is not obtained from
stoichiometry only. (Lee and Othmer [23], Sect. 3, Step 3, discuss this case generally;
there must be linear first integrals which are not induced by stoichiometry.)

Example 5 We consider a model of suicide kinetics, discussed in Burke et al. [5] and
Tatsunami et al. [32] (and also in [13]), with reaction scheme

E + S
k1�

k−1
X

k2
⇀ Y

k3
⇀ E + P, Y

k4
⇀ Ei

for substrate S, enzymes E , Ei , intermediates X , Y and product P . In addition to a
Michaelis–Menten scheme with two intermediates, there is also irreversible degrada-
tion of Y to inactivated enzyme Ei . Since a molecule of S is irreversibly bound in Ei ,
one calls S a suicide substrate.

Let z = (e, s, x, y, p, ei )
T ∈ R

6+ denote the vector of concentrations, ż = f (z)
the equations of the suicide kinetics. A stoichiometric decomposition f (z) = ̂P · μ̂(z)
reads

f (z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 1 0
−1 0 0 0
1 −1 0 0
0 0 −1 −1
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

k1es + k−1x
k2x
k3 y
k4 y

⎞

⎟

⎟

⎠

.

Note that the entries of μ̂ are dependent; the zero set is a union of two three-dimensional
subspaces given by e = x = y = 0 resp. s = x = y = 0. A further decomposition
according to Lemma 1 (b) is easy to find:

μ̂ = P∗ · μ :=

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 k3
0 0 k4

⎞

⎟

⎟

⎠

⎛

⎝

k1es + k−1x
k2x

y

⎞

⎠

To summarize, we obtain a decomposition with matrix

P :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 1
−1 0 0
1 −1 0
0 0 −(k3 + k4)

0 0 k3
0 0 k4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

of rank 3, and μ as above.

In view of applications to Tikhonov–Fenichel reduction via Theorem 1, there is
particular interest in situations where the conclusion of Lemma 1, part (c) holds.
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Some notable results on this question are known, such as the following Deficiency
Zero Theorem by Horn and Jackson [19], and Feinberg [9].

Proposition 3 Assume that a reaction network has deficiency zero, and is weakly
reversible. Let a decomposition as in Lemma 1(a) be given. Then every positive
SCC contains precisely one stationary point, which is locally asymptotically sta-
ble. The stationary points in R

∗+n form a submanifold of dimension n − q, and
R

n = Ker D f (x)⊕ Im D f (x) for each of these stationary points.

Proof For the first and second assertion see [9], Thm. 4.1, the third holds according to
[9], Remark 4.3, and the last one follows from [9], Thm. 4.3 together with Remark 4.

��
Remark 7 There are several generalizations and specializations of this result.

(a) The Deficiency One Theorem (Feinberg [9], Thm. 4.2, is based on the following
hypotheses: Deficiency ≤ 1 for each linkage class; the total deficiency equals the
sum of the deficiencies for the linkage classes; every linkage class contains just
one terminal strong-linkage class. Then, assuming that there exists a stationary
point in R

∗+n , the second conclusion of Proposition 3 still holds true.
(b) Bothe [4], Thm. 1, is based on the (strong) assumption that the network is

reversible, and that the stoichiometric vectors associated with pairs of forward-
reverse reactions form a linearly independent set. Under these conditions (which
imply deficiency zero) there is a globally asymptotically stable stationary point
in each SCC. Moreover the asymptotic stability is locally uniform (when the sta-
tionary point runs through varying SCC), in the sense that there exists a Lyapunov
function, and a locally uniform estimate for its Lie derivative. (This property is
not stated explicitly in [4], but follows from the inequality on p. 33, last line.)

(c) If a stationary point x0 in a positive SCC is linearly asymptotically stable in its com-
patibility class, then the stationary points locally form a manifold of dimension
n − q, and one has the direct sum decomposition R

n = Ker D f (x)⊕ Im D f (x)
for every stationary point. See Remark 4 and [15], Prop. 8.3.

(d) Schauer and Heinrich [28], Sect. 4, discuss the condition (at a stationary point x0)

f (x0) = 0 and rank S Dθ(x0) = rank S
(⇔ rank ˜P Dμ̃(x0) = rank ˜P

)

.

They note that this condition is sufficient to ensure the existence of a local (n−q)-
dimensional submanifold of stationary points; but (as Example 4 illustrates) there
is no direct sum decomposition in general. See also the rank condition in Lee and
Othmer [23], p. 407 on this. (Schauer and Heinrich moreover assert that their rank
condition is satisfied whenever all reactions in the network are reversible.)

3.2 Reduction via stoichiometry

In this section, we discuss a system of reaction equations with a separation into slow
and fast reactions. The focus is on systems which admit a Tikhonov–Fenichel reduction
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through the stoichiometric decomposition of the fast part. Thus we have

ẋ = h(0)(x)+ εh(1)(x), x ∈ R
n+, (16)

and focus on decompositions
h(0)(x) = S θ(x) (17)

with a stoichiometric matrix S of rank q < n, refined according to Lemma 1(a), thus

h(0)(x) = ̂P μ̂(x) (18)

with a constant matrix ̂P .

Proposition 4 Let system (16) be given, with decompositions (17) and (18) for the
fast part, and let x0 be a nonnegative stationary point of h(0). Then the following hold.

(a) If x0 is isolated in its SCC, and Dμ̂(x0) ̂P(x0) is invertible then there exists a formal
Tikhonov–Fenichel reduction of (16) in the sense of Remark 3. In particular such
a formal reduction exists whenever x0 ∈ R

∗+n and the hypotheses of Feinberg’s
deficiency-one theorem (see Remark 7) are satisfied for h(0).

(b) If the hypotheses of (a) are satisfied then the reduced equation may be determined
directly from the decomposition (17): For x near x0 the linear equation

Dθ(x)Sα = Dθ(x)h(1)(x), for α ∈ R(x)n

has a solution α∗(x) ∈ R(x)n, which gives the reduced system

x ′ = h(1)(x)− Sα∗(x). (19)

(c) If the reaction network underlying h(0) has deficiency zero, and the uniformity
condition for asymptotic stability from Verhulst [34], Thm. 8.1b holds for all
stationary points near x0 then the convergence property holds for the formal
Tikhonov–Fenichel reduction. In particular this holds whenever all nonzero eigen-
values of Dh(0)(x0) have negative real part, and also given the conditions stated
by Bothe [4] (see Remark 7).

Proof Parts (a) and (c) are immediate consequences of the statements in Proposition 3
and Remark 7. For part (b), the observation

rank Dh(0)(x0) = rank S Dθ(x0) = rank S

shows that Ker Dθ(x0) ∩ Im S = {0}, and then (by inclusion and equal dimensions)

Ker Dh(0)(x0) = Ker Dθ(x0), Im Dh(0)(x0) = Im S.

For y ∈ R
n we thus have a kernel-image decomposition

y = z + Sα ⇒ Dθ(x0)y = Dθ(x0)Sα;
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in particular the linear equation stated in (b) admits a solution α∗, and the assertion
follows. ��

Remark 8 The uniformity condition mentioned in Verhulst [34], Ch. 8 is stated in
detail in Hoppensteadt [18], under the name of Condition VI. It may actually be true
that in the analytic setting the uniformity condition is always satisfied, but there seems
to be no simple proof. Due to Proposition 4, Bothe’s [4] Theorem 2 can be proved
directly via Tikhonov.

Example 6 (Suicide kinetics, again) We discuss suicide kinetics with k1 = εκ1 as
small parameter. Using the results from Example 5 and discarding the equations for
p and ei , we have

h(0) =

⎛

⎜

⎜

⎝

−1 0 1
1 0 0
1 −1 0
0 0 −(k3 + k4)

⎞

⎟

⎟

⎠

·
⎛

⎝

k−1x
k2x

y

⎞

⎠ , h(1) = k1

⎛

⎜

⎜

⎝

−es
−es
es
0

⎞

⎟

⎟

⎠

. (20)

The variety of the fast term V(μ) = {(e, s, 0, 0)T } defines the slow manifold. We
proceed with

⎛

⎝

k−1x
k2x

y

⎞

⎠ =
⎛

⎝

k−1 0
k2 0
0 1

⎞

⎠

(

x
y

)

and thus get the appropriate decomposition

h(0) =

⎛

⎜

⎜

⎝

−k−1 0
k−1 0

k−1 − k2 0
0 −(k3 + k4)

⎞

⎟

⎟

⎠

·
(

x
y

)

=: P · μ

in accordance with Lemma 1. Furthermore one finds

Dμ P =
(

k−1 − k2 0
0 −(k3 + k4)

)

Note that one must require k−1 �= k2 to ensure invertibility of Dμ P . The projection
matrix turns out to be

⎛

⎜

⎜

⎜

⎝

1 0 k−1
k−1−k2

0

0 1 − k−1
k−1−k2

0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠
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and finally the reduced system is

ė = − k1k2
k−1−k2

es

ṡ = − k1(k2−2k−1)
k−1−k2

es,
(21)

with an elementary solution.

4 Application: maltose transport

In this section we discuss a Tikhonov–Fenichel reduction to a one-dimensional variety
which does not seem to allow an explicit parameterization. Nevertheless we are able to
analyze the limiting behavior of the reduced system, since the qualitative behavior of
vector fields on one-dimensional submanifolds (and by extension on varieties) is well-
understood. Thus the example also illustrates how reduction to a nontrivial variety will
provide useful information for further analysis.

Stiefenhofer [31] discusses a transport mechanism through a biomembrane, with
a mechanism based on selective permeability. In order to pass through the cell mem-
brane, a maltose molecule X first reacts with a so-called binding protein Z to a com-
plex Y1. The latter reacts with the membrane-bound receptor R, forming a complex Y2,
which subsequently degrades, thus releasing maltose into the cell. This last process
is modelled by reaction E∗

1 , where Xi stands for maltose in the interior of the cell.
In addition, Stiefenhofer assumes a direct reaction E∗

4 between the binding protein
and the mebrane receptors. Altogether, the transport mechanism is modelled by the
network

E∗
1 : Y2

k1
⇀ R + Z + Xi E∗

2 : Z + X
k2�

k−2
Y1

E∗
3 : Y1 + R

k3�
k−3

Y2 E∗
4 : Z + R

k4�
k−4

Y3.

The corresponding reaction rates are

E1 := −y2 E2 := y1 − zx
E3 := y2 − y1r E4 := y3 − zr

and the reaction equations (with ξ denoting the concentration of Xi ) thus are

ẋ = E2
ż = −εE1 + E2 + E4
ṙ = −εE1 + E3 + E4

ξ̇ = −εE1
ẏ1 = −E2 + E3
ẏ2 = εE1 − E3
ẏ3 = −E4

(22)
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From stoichiometry one has linear first integrals

z + y1 + y2 + y3, r + y2 + y3, x + ξ + y1 + y2.

With initial conditions x(0) = x0 > 0, z(0) = z0 > 0, r(0) = r0 > 0, ξ(0)
= ξ0 > 0 and y1(0) = y2(0) = y3(0) = 0 we obtain a four-dimensional system for
(ξ, y1, y2, y3)

T , upon replacing

z = z0 − (z + y1 + y2 + y3), r = r0 − (y2 + y3), x = x0 + ξ0 − (ξ + y1 + y2).

We note that the compact set

L :={(ξ, y1, y2, y3)
T ∈ R

4+; y1+y2+y3 ≤ z0, y2+y3 ≤ r0, ξ + y1+y2 ≤ ξ0 + x0}

is positively invariant for this four-dimensional system.
According to [31], the release of maltose into the cell is slow compared to the other

reactions, i. e. k1 is a small parameter. The fast and slow terms are therefore given by

h(0) =

⎛

⎜

⎜

⎝

0
−E2 + E3

−E3
−E4

⎞

⎟

⎟

⎠

, h(1) =

⎛

⎜

⎜

⎝

−E1
0

E1
0

⎞

⎟

⎟

⎠

.

For this system, Stiefenhofer [31] discussed the initial phase of the process and
obtained a starting value on the slow manifold. In the present paper we investigate the
QSS phase.

The reduction works for arbitrary rate constants, but (following [31]) to keep the
output size manageable we fix the rate constants k2 = k−2 = k3 = k−3 = k4
= k−4 = 1 from now on. We get a matrix decomposition h(0) = P · μ with

μ =
⎛

⎝

E2
E3
E4

⎞

⎠ =
⎛

⎝

y1 − (z0 − (y1 + y2 + y3))(x0 + ξ0 − ξ − (y2 + y1))

y2 − y1(r0 − (y2 + y3))

y3 − (z0 − (y1 + y2 + y3))(r0 − (y2 + y3))

⎞

⎠

and

P =

⎛

⎜

⎜

⎝

0 0 0
−1 1 0
0 −1 0
0 0 −1

⎞

⎟

⎟

⎠

.

A formal reduction exists if and only if the matrix

Dμ · P

=
⎛

⎝

ξ − ξ0 + 2(y1 + y2)+ y3 − (x0 + z0 + 1) 1 ξ − ξ0 + y1 + y2 − x0

−(y2 + y3)+ r0 −y1 + y2 + y3 − (r0 + 1) −y1

y2 + y3 − r0 y1 + y2 + y3 − z0 y1 + 2y2 + 2y3 − (r0 + z0 + 1)

⎞

⎠
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is invertible. Setting

b = Dμ · h(1) =
⎛

⎝

y2(ξ − ξ0 + y1 + y2 − x0)

−y2(y1 + 1)
y2(y1 + 2(y2 + y3)− (r0 + z0))

⎞

⎠ ,

then

α = 1

n

⎛

⎝

ξ − ξ0 + y1 + y2 − (x0 + 1)
ξ − ξ0 + 2(y1 + y2)+ y3 − (x0 + z0 + 1)

y2(y1 + y2 + y3 − z0)(y2 + y3 − r0)

⎞

⎠

with polynomial denominator

n = ξ0 − ξ + (y1 + y2 + y3 − z0)(y2 + y3 − r0 − 1)− (y1 + y2)+ 1 + x0

solves the linear equation

(DμP) · α = b.

(Note that n > 0, due to initial values and first integrals.) As remarked in Proposi-
tion 4(b) the reduced vector field is given by h(1) − Pα, explicitly

ξ̇ = y2

ẏ1 = y2(y1 + y2 + y3 − z0)

n(ξ, y1, y2, y3)

ẏ2 = −y2 − y2(ξ − ξ0 + 2(y1 + y2)+ y3 − (x0 + z0 + 1))

n(ξ, y1, y2, y3)

ẏ3 = y2((y2 + y3)(y1 + y2 + y3 − r0 − z0)+ r0(z0 − y1))

n(ξ, y1, y2, y3)
(23)

on the one-dimensional slow manifold Y := V(μ)\V(det DμP). It seems impossible
to determine an explicit parameterization of this algebraic curve, but we will be able
to give a complete qualitative analysis. We first recall a few general facts.

Remark 9 The behavior of (polynomial or rational) vector fields on one-dimensional
varieties is rather easy to understand. The singular points of such a variety (which
are finite in number) form an invariant set, thus are stationary. The complement of
the singular set is a finite union of submanifolds (without boundary), and each con-
nected component is diffeomorphic either to R or to the circle S

1 (see e.g. Milnor
[24], “Appendix”). The qualitative behavior of differential equations on R is well-
understood: Nonstationary trajectories are unbounded or have stationary limit points
(in either direction). Likewise, nonstationary trajectories on the circle connect station-
ary points if there are any (which then are limit points), or correspond to periodic
solutions.
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Proposition 5 (a) The intersection K := L ∩ Y is positively invariant for (23).
The determinant of DμP is nonzero on L, hence a formal Tikhonov–Fenichel
reduction exists on L.

(b) Y is a reducible variety, with two irreducible components (in the Zariski topology)
and there are no singular points in K . There are two stationary points on Y , viz.

s1 :=
(

ξ0 + x0, 0, 0, r0+z0+1
2 +

√

(r0+z0+1)2
4 − r0z0

)T

,

s2 :=
(

ξ0 + x0, 0, 0, r0+z0+1
2 −

√

(r0+z0+1)2
4 − r0z0

)T

.

Only s2 lies in K .
(c) There is no closed connected component of Y (in the norm topology) that intersects

L. Only one connected component of Y has nonempty intersection with L, and
the intersection contains s2.

(d) The stationary point s2 is globally asymptotically stable on K . Concerning the
linearization of the restriction of (23) to Y , the eigenvalue (which governs the
approach to the stationary point) is

λ := s2,3 − z0

(s2,3 − r0 − 1)(s2,3 − z0)+ 1
,

with s2,3 the y3-component of s2. An eigenvector is given by (1, λ, λ, λ)T .

Proof The positive invariance of K for (23) follows from the positive invariance of L
for the four-dimensional system and the reduction formula. Moreover

det (DμP) = (2(y3 + y2)− z0 − r0 − 1)((ξ0 + x0 − ξ − y1 − y2)

+ (z0 − y1 − y2 − y3))+ (1 + (r0 − y2 − y3)(z0 − y1 − y2 − y3))

is > 0 on L by inspection. For instance the term

2(y3 + y2)− z0 − r0 − 1 = (y2 + y3 − z0)+ (y2 + y3 − r0)− 1

is negative on L , and the other terms can be analyzed similarly. Thus (a) is proven.
To prove the first assertion of (b), we use Singular [7] to compute a primary

decomposition of the vanishing ideal I(V(μ)) and take radicals. (See Decker and
Lossen [8], Ch. 7 for background.) Thus we obtain a decompostion of V(μ) into two
irreducible components V(μ) = W1 ∪ W2. As a practical matter we let

u =
√

(r0 + z0 + 1)2

4
− r0z0,
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take Q[u] as a base ring and add the minimum polynomial of u to the ideal generators.
The ideal I(W1) is generated by

ω1 = u2 − (r0 + z0 + 1)u + r0z0,

ω2 = y2 + y3 − u,

ω3 = r0(y1 + y2)− y3u + (r0 + z0 + 1)y3 − r0z0,

ω4 = r0z0ξ y3 + z0 y2
3 u − z0(r0 + z0 + 1)y2

3 + (x0 + ξ0 − z0 + 1)zu2

+ ((z0 − 1)(r0 + 1)− (x0 + ξ0)(r0 + z0 + 1))y3u

+ ((r0 + z0 + 1)2 + r0z0)u − r0z0(r0 + z0 + 1)− (r0 + z0 + 1)u2

over Q[u] (respectively over Q, upon substitution for u). Generators of I(W2) are

ω5 = u2 − (r0 + z0 + 1)u + r0z0,

ω6 = y2 + y3 + u − (r0 + z0 + 1),

ω7 = r0(y1 + y2)+ y3u − r0z0,

ω8 = r0z0ξ y3 − z0 y2
3 u + (x0 + ξ0 − z0 + 1)zu2 + (−(x0 + ξ0) ·

(r0 + z0 + 1)+ (z0 − 1)(r0 + 1))y3u + ((r0 + z0 + 1)2 − r0z0)u

− (r0 + z0 + 1)u2.

By straightforward computation one finds the stationary points on V(μ), namely

s1 :=
(

ξ0 + x0, 0, 0, r0+z0+1
2 +

√

(r0+z0+1)2
4 − r0z0

)T

,

s2 :=
(

ξ0 + x0, 0, 0, r0+z0+1
2 −

√

(r0+z0+1)2
4 − r0z0

)T

.

One checks s1 ∈ W1 and s2 ∈ W2 by substitution into the ideal generators. On L one
has y2 + y3 ≤ (r0 + z0)/2, and this shows that s1 �∈ K . Let g be the right-hand side
of the reduced equation. The linearization of (23) in s2 reads

Dg(s2) =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 λ 0
0 0 λ 0
0 0 λ 0

⎞

⎟

⎟

⎠

.

This matrix has eigenvalue 0 with multiplicity 3 and one nontrivial eigenvalue λ < 0.
The nonzero eigenvalue corresponds to the tangent space of Y (see e.g. the arguments
on NFIS in Bibikov [2]), hence the stationary point s2 is linearly asymptotically stable
for the restriction to Y .

There remains to prove that s2 ∈ K and that K contains no closed connected
component. Assume that such a closed component exists. Then it cannot contain
s1 �∈ K , and also it cannot contain s2, since s2 cannot be an α-limit point. Therefore
nontrivial periodic solutions must exist. But inspecting the first entry of (23) shows (by
monotonicity) that a periodic solution must have y2-entry zero, and thus be stationary;
a contradiction.
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Since the ω-limit set of any point in K is nonempty, Remark 9 shows that K must
contain a stationary point (thus necessarily s2) and this stationary point is the ω-limit
point for all solutions in K .

Thus all claims are proven. ��
There remains the legitimate question to what extent this Proposition holds for

general parameters ki , rather than the special ones chosen. Part (a) remains true (with
appropriately modified definitions of L and K ), as does the assertion that there is no
nonconstant periodic solution, since the monotonicity argument remains valid. On the
other hand, the number of irreducible components and the number and properties of
stationary points may vary, in principle; this would require further study by algebraic
means.

Appendix

Some algebra

We give a brief account of some notions and results from classical commutative algebra
and algebraic geometry. In our context these are mostly relevant for computational and
algorithmic purposes. A more detailed (application-oriented) presentation is given in
the monograph by Cox, Little, O’Shea [6]; in proofs below we will refer to some special
results stated in Shafarevich [30]. A very good short introduction to commutative
algebra and algebraic geometry is contained in Humphreys [20], Ch. I; much of what
we need is already contained in subsections 1.1 to 1.3 of this monograph. We let K

stand for R or the complex numbers C.

1. With K[x1, . . . , xn] we denote the polynomial ring in n variables; we will regard a
polynomial as a map from K

n to K. A subset Y ⊆ K
n will be called Zariski-closed,

or an affine algebraic variety if there exist finitely many polynomials φ1, . . . , φr

such that Y is the set of common zeros of these polynomials in K
n ; we will write

Y = V(φ1, . . . , φr ). Rather than considering polynomials φ1, . . . , φr one looks
at the ideal I = 〈φ1, . . . , φr 〉 they generate; note that Y is the common zero set
of all the elements of I. The complement of a Zariski-closed set in K

n is called
Zariski-open (this is an open and dense set in the norm topology, unless empty),
and we transfer this notion to Zariski-open subsets of affine varieties in the obvious
way.

2. There is one particular feature of the Zariski topology: One calls a Zariski-closed
set Y reducible if there are Zariski closed sets Y1, Y2 ⊂ Y with Yi �= Y , i = 1, 2
but Y1 ∪ Y2 = Y , and irreducible otherwise. Every Zariski-closed set is a finite
union of irreducible components: Y = Y1 ∪· · ·∪Ym , with no Yi a subset of another
Y j , and this representation is unique up to ordering.

3. With K(x1, . . . , xn) we denote the field of rational functions in n variables; a
rational function may be seen as a map from a Zariski-open subset U of K

n (those
points where the denominator is nonzero) to K. One may extend the notion of
rational function to irreducible varieties by restriction, but note that the variety
should not be contained in the zero set of the denominator. If Y is irreducible and
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a ∈ Y then the local ring of a (denoted by Oa or Oa,Y ) is defined as the set of
all rational functions that can be represented as a quotient of polynomials with
nonzero denominator at a. (One then says that such functions are regular at a.)

4. Given Y = V(φ1, . . . , φr ) and a ∈ Y , the tangent space of Y in a is defined as

Ta(Y ) := {

z ∈ K
n; Dφ1(a)z = · · · Dφr (a)z = 0

}

,

similar to the definition for submanifolds of K
n . One can show that this notion does

not depend on the specific choice of the φi . A point a ∈ Y is called simple if (i) a
is contained in only one irreducible component Yi of Y , and (ii) the dimension of
Ta(Y ) is not greater than the dimension of Tb(Y ), for any b ∈ Yi . (The dimension
of Ta(Y ) is also equal to the dimension of the variety Yi .) The simple points of Yi

form a Zariski-open and dense subset of Yi , which is also a submanifold of K
n in

the usual sense. This observation also implies that any affine algebraic variety, as
well as any Zariski-open subset of such a variety, is a finite union of submanifolds.

Proof of Theorem 1

We first state a lemma which essentially says that a n − r -dimensional subvariety
of K

n can locally, near a simple point, be represented as the common zero set of r
rational functions. A proof is given in Shafarevich [30], Ch. II, §2.3 (using special
properties of K), and also for a more general setting in [30], Ch. II, §3, Thm. 5, using
special properties of the local ring. (The proof of Thm. 5 is given for an algebraically
closed base field, but in case K = R one obtains the assertion by taking real parts. The
more general statement from Thm. 5 becomes relevant when one considers successive
reductions, thus also reductions starting on varieties.)

Lemma 2 Let μ1, . . . , μm ∈ K(x1, . . . , xn), Y = V(μ1, . . . , μm), and a ∈ Y a
simple point. Let ˜Y ⊆ Y the irreducible component which contains a, with dim ˜Y
= n − r . Moreover assume (w.l.o.g., up to relabeling) that

rank

⎛

⎜

⎝

Dμ1(a)
...

Dμr (a)

⎞

⎟

⎠
= r.

Then for any η ∈ K(x1, . . . , xn) which (is regular and) vanishes on ˜Y , there exist
ϑ1, . . . , ϑr ∈ K(x1, . . . , xn), regular at a, such that

η = ϑ1μ1 + · · · + ϑrμr .

Proof of Theorem (a) The first (as well as the last) assertion is a direct consequence
of Lemma 2, taking the entries of h(0) to be μ1, . . . , μn , assuming μi1 , . . . , μir
to be independent at a and applying the statement of the Lemma to each μ j . The
irreducible component ˜Y of V(h(0)) which contains a has dimension n − r . Thus
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the rank of Dh(0)(x) is equal to r in some Zariski neighborhood of a in V(h(0)),
since smaller rank is characterized by the vanishing of certain minors.

(b) A step-by-step derivation of (8) was given in [15]. Here we present a shorter
version.
There is a Zariski-open neighborhood Ua of a in R

n such that

R
n = Ker Dh(0)(x)⊕ Im Dh(0)(x)

for all x ∈ Ua := Ua ∩ ˜Y , since the kernel must have dimension n − r = dim ˜Y .
Since P(x) has full rank, we get

Ker Dh(0)(x) = Ker Dμ(x) and Im Dh(0)(x) = Im P(x)

and furthermore

Dh(0)(x) = P(x) Dμ(x)

for all x ∈ Ua . Moreover by Remark 4, A(x) := Dμ(x) P(x) is invertible for all
x ∈ Ua .
Since

Dμ(x)
(

I d − P(x)A(x)−1 Dμ(x)
)

h(1)(x)
= (

Dμ(x)− A(x)A(x)−1 Dμ(x)
)

h(1)(x) = 0,

every component of μ is a first integral of (8). The invariance assertion follows
from part (a).

(c) Now let

v = v0 + v1 ∈ R
n; v0 ∈ Ker Dh(0)(x), v1 = P(x)w ∈ Im Dh(0)(x).

Then

P(x)A(x)−1 Dμ(x) (v0 + v1) = P(x)A(x)−1 Dμ(x)P(x)w = P(x)w = v1,

whence I d − P(x)A(x)−1 Dμ(x) projects any vector to its kernel component
with repect to the kernel-image decomposition. According to [26], Lemma 2.4 and
Proposition 2.5, the reduced system for (2) is obtained as the kernel component of
h(1)(x) in the kernel-image decomposition with respect to Dh(0)(x). This finishes
the proof.

��

Algorithmic decomposition

The decomposition introduced in Lemma 2 can be carried out constructively with the
help of standard bases; see Decker and Lossen [8], in particular Lecture 9, for a general
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introduction and details concerning the algorithms. Here we give a short outline of
the procedure, for the reader’s convenience. Thus assume the situation in Lemma 2 is
given. Regarding the local ring Oa , the lemma states that

I := 〈μ1, . . . , μr 〉

is the vanishing ideal ideal of ˜Y . Given η ∈ I , one obtains the ϑ j in three steps:

1. Given a local monomial order, denote by L(γ ) the leading term of a monomial.
The first step is to complete M := {μ1, . . . , μr } to a standard basis of I . To do so,
given a generating set q1, . . . , q� of I , one computes all S-polynomials

si, j := S(qi , q j ) = L(q j )

gcd(L(q j ), L(qi ))
qi − L(qi )

gcd(L(qi ), L(q j ))
q j ∈ Oa,

1 ≤ i, j ≤ �, augments the generating set by the si, j �∈ {q1, . . . , q�}, and continues
the process with the augmented set. As shown in [8], this process terminates; thus
after finitely many steps one obtains a standard basis from μ1, . . . , μr .

2. Given any set {φ1, . . . , φk} ⊂ I and a nonzero η ∈ Oa , Mora’s division algorithm
(see [8], Thm. 9.19) yields ρ and γ1, . . . , γk ∈ Oa , such that

η =
k

∑

i=1

γiφi + ρ

and
• (DIV 1): L(η) ≥ L(γiφi ), 1 ≤ i ≤ k (unless γiφi = 0).
• (DIV 2): L(ρ) is not divisible by any of L(φi ), 1 ≤ i ≤ k unless ρ = 0.

For a standard basis {φ1, . . . , φk} the remainder ρ vanishes if and only if η ∈ I .
3. Now consider a standard basis

φi =
{

μi , 1 ≤ i ≤ r,

σi , r + 1 ≤ i ≤ k,

of I which is obtained from μ1, . . . , μr by successively adjoining S-polynomials
σr+1, . . . , σk . For η ∈ I we obtain a representation η = ∑r

i=1 γiφi . Since φi can
be expressed as a linear combination of φ1, . . . , φi−1 as long as i > r , successive
substitution yields a representation

η =
r

∑

i=1

ϑiμi

with ϑi ∈ Oa for 1 ≤ i ≤ r .

There is an implementation of Mora’s algorithm in the computer algebra system
Singular; see [7]. Thus we see, as stated earlier, that the reduction of rational systems
can be obtained in an algorithmic fashion.
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